Tugas 4 Materi Rangkuman Aljabar Boolean

BOOLEAN ALGEBRA LAWS AND RULES


The law of commutative addition,

A + B = B + A

ORing order doesn't matter



Substitution of Multiplication Law

Substitution of Multiplication Law

AB = BA

the ANDing order doesn't matter.


The law of associative addition

The law of associative addition,

A + (B + C) = (A + B) + C

The ORed variable grouping does not matter


Associative law of multiplication

Associative law of multiplication

A (BC) = (AB) C

The ANDed variable grouping is not a problem



Distributive Law

A (B + C) = AB + AC

(A + B) (C + D) = AC + AD + BC + BD)


Boolean rules

1) A + 0 = A

Ÿ In math, if you add 0, you don't change anything

Ÿ In Boolean Algebra ORing with 0 doesn't change anything.

2) A + 1 = 1

Ÿ ORing with 1 must give 1 because if any input is 1, the OR gate will give 1.

3) A • 0 = 0

Ÿ In math, if 0 is multiplied by whatever you get 0. If you are AND anything with 0, you get 0.

4) A • 1 = A

Ÿ RELING on anything by 1 will result in anything.

5) A + A = A

Ÿ ORing by itself will give the same result.

6) A + A = 1

Ÿ Either A or A must be 1 so A + A = 1.

7) A • A = A

Ÿ ANDing by itself will give the same result.

8) A • A = 0

Ÿ In digital logic 1 = 0 and 0 = 1, so AA = 0 because one of the inputs must be 0.

9) A = A

Ÿ If you don't do something twice you go back to the beginning.

10) A + AB = A

Proof:

A + AB = A (1 + B) DISTRIBUTIVE LAW

            = A · 1 RULE 2: (1 + B) = 1

            = RULE 4: A · 1 = A.

11) A + AB = A + B

Ÿ If A is 1 the output is 1, If ​​A is 0 the output is B

Proof:

A + AB = (A + AB) + AB RULE 10

             = (AA + AB) + AB RULE 7

             = AA + AB + AA + AB RULE 8

             = (A + A) (A + B) FACTOR

             = 1 (A + B) RULE 6

             = A + B Rule 4

12) (A + B) (A + C) = A + BC

PROOF

(A + B) (A + C) = AA + AC + AB + BC LEGAL DISTRIBUTIVE

                        = A + AC + AB + BC RULE 7

                        = A (1 + C) + AB + BC FACTORING

                        = A.1 + AB + BC RULE 2

                        = A (1 + B) + BC FACTORING

                        = A.1 + SM RULE 2

                        = A + SM RULE 4

DITULIS    : ANANDA BAGAS PRANATA

SUMBER    : https://www.kabarmutiongkok.org/uhamka/last-lectur-2

                       https://onlinelearning.uhamka.ac.id


Komentar

Postingan populer dari blog ini

SIMULASI DAN PEMODELAN OLEH ANANDA BAGAS PRANATA

HUBUNGAN SIMULASI DAN PEMODELAN DALAM SEBUAH SISTEM OLEH ANANDA BAGAS PRANATA

STUDI SIMULASI DAN PEMODELAN DALAM SEBUAH SISTEM OLEH ANANDA BAGAS PRANATA