Tugas 4 Materi Rangkuman Aljabar Boolean

BOOLEAN ALGEBRA LAWS AND RULES


The law of commutative addition,

A + B = B + A

ORing order doesn't matter



Substitution of Multiplication Law

Substitution of Multiplication Law

AB = BA

the ANDing order doesn't matter.


The law of associative addition

The law of associative addition,

A + (B + C) = (A + B) + C

The ORed variable grouping does not matter


Associative law of multiplication

Associative law of multiplication

A (BC) = (AB) C

The ANDed variable grouping is not a problem



Distributive Law

A (B + C) = AB + AC

(A + B) (C + D) = AC + AD + BC + BD)


Boolean rules

1) A + 0 = A

Ÿ In math, if you add 0, you don't change anything

Ÿ In Boolean Algebra ORing with 0 doesn't change anything.

2) A + 1 = 1

Ÿ ORing with 1 must give 1 because if any input is 1, the OR gate will give 1.

3) A • 0 = 0

Ÿ In math, if 0 is multiplied by whatever you get 0. If you are AND anything with 0, you get 0.

4) A • 1 = A

Ÿ RELING on anything by 1 will result in anything.

5) A + A = A

Ÿ ORing by itself will give the same result.

6) A + A = 1

Ÿ Either A or A must be 1 so A + A = 1.

7) A • A = A

Ÿ ANDing by itself will give the same result.

8) A • A = 0

Ÿ In digital logic 1 = 0 and 0 = 1, so AA = 0 because one of the inputs must be 0.

9) A = A

Ÿ If you don't do something twice you go back to the beginning.

10) A + AB = A

Proof:

A + AB = A (1 + B) DISTRIBUTIVE LAW

            = A · 1 RULE 2: (1 + B) = 1

            = RULE 4: A · 1 = A.

11) A + AB = A + B

Ÿ If A is 1 the output is 1, If ​​A is 0 the output is B

Proof:

A + AB = (A + AB) + AB RULE 10

             = (AA + AB) + AB RULE 7

             = AA + AB + AA + AB RULE 8

             = (A + A) (A + B) FACTOR

             = 1 (A + B) RULE 6

             = A + B Rule 4

12) (A + B) (A + C) = A + BC

PROOF

(A + B) (A + C) = AA + AC + AB + BC LEGAL DISTRIBUTIVE

                        = A + AC + AB + BC RULE 7

                        = A (1 + C) + AB + BC FACTORING

                        = A.1 + AB + BC RULE 2

                        = A (1 + B) + BC FACTORING

                        = A.1 + SM RULE 2

                        = A + SM RULE 4

DITULIS    : ANANDA BAGAS PRANATA

SUMBER    : https://www.kabarmutiongkok.org/uhamka/last-lectur-2

                       https://onlinelearning.uhamka.ac.id


Komentar

Postingan populer dari blog ini

SIMULASI DAN PEMODELAN OLEH ANANDA BAGAS PRANATA

HUBUNGAN SIMULASI DAN PEMODELAN DALAM SEBUAH SISTEM OLEH ANANDA BAGAS PRANATA