Tugas 3, Rangkuman Materi Aljabar Boolean

Aljabar Boolean

Aljabar Boolean adalah alat yang penting dalam menggambarkan, menganalisa, merancang, dan mengimplementasikan rangkaian digital.

1. Konstanta Boolean dan Variabel.

  • Aljabar Boolean dibawah ini hanya mempunyai dua nilai : 0 dan 1.
  • Logika 0 dapat dikatakan : false, off, low, no, saklar terbuka.
  • Logika 1 dapat dikatakan: true, on, high, yes, saklar tertutup.
  • Tiga operasi logika dasar: OR, AND, dan NOT. 
2. Tabel Kebenaran

  • Sebuah tabel kebenaran menggambarkan hubungan antara input dan ouput sebuah rangkaian logika.
  • Jumlah The number of entries corresponds to the number of inputs. For example a 2 input table would have 2 2 = 4 entries. A 3 input table would have 2 3 = 8 entries
  • Contoh tabel kebenaran dengan masukan 2, 3 dan 4 buah. 

3. Operasi OR dengan gerbang OR 
  • The Boolean expression for the OR operation is X = A + B
          > This is read as “x equals A or B.”
           > X = 1 when A = 1 or B = 1.
  • Truth table and circuit symbol for a two input OR gate:
     
4. OR Operation With OR Gates
  • The OR operation is similar to addition but when A = 1 and B = 1, the OR operation produces 1 + 1 = 1.
  • In the Boolean expression
             x=1+1+1=1
             We could say in English that x is true (1) when A is true (1) OR B is true (1) OR C is true (1).
  • There are many examples of applications where an output function is desired when one of multiple inputs is activated.
 

5. AND Operations with AND gates
  • The Boolean expression for the AND operation is X = A • B
           This is read as “x equals A and B.”
           x = 1 when A = 1 and B = 1.
  • Truth table and circuit symbol for a two input AND gate are shown. Notice the difference between OR and AND gates.
6. Operation With AND Gates
  • The AND operation is similar to multiplication.
  • In the Boolean expression 
           X = A • B • C
           X = 1 only when A = 1, B = 1, and C = 1.

7. NOT Operation
  • The Boolean expression for the NOT operation is 
          X = A 
  • This is read as:
          > x equals NOT A, or
          > x equals the inverse of A, or
          > x equals the complement of A

8. Describing Logic Circuits Algebraically
  • The three basic Boolean operations (OR, AND, NOT) can describe any logic circuit.
  • If an expression contains both AND and OR gates the AND operation will be performed first, unless there is a parenthesis in the expression.
9. Evaluating Logic Circuit Outputs
  • Rules for evaluating a Boolean expression:
          > Perform all inversions of single terms.
          > Perform all operations within parenthesis.
          > Perform AND operation before an OR operation unless parenthesis indicate otherwise.
          > If an expression has a bar over it, perform the operations inside the expression and then invert                 the result.
 
10. NOR Gates and NAND Gates
  • Combine basic AND, OR, and NOT operations.
  • The NOR gate is an inverted OR gate. An inversion “bubble” is placed at the output of the OR gate.
  • The Boolean expression is, x = A + B
11. Universality of NAND and NOR Gates
  • NAND or NOR gates can be used to create the three basic logic expressions (OR, AND, and INVERT)
  • This characteristic provides flexibility and is very useful in logic circuit design.
12. Summary of Methods to Describe Logic Circuits
  • The three basic logic functions are AND, OR, and NOT.
  • Logic functions allow us to represent a decision process.
          > If it is raining OR it looks like rain I will take an umbrella.
          > If I get paid AND I go to the bank I will have money to spend.

PENULIS    : Ananda Bagas Pranata (2F)

Komentar

Postingan populer dari blog ini

SIMULASI DAN PEMODELAN OLEH ANANDA BAGAS PRANATA

HUBUNGAN SIMULASI DAN PEMODELAN DALAM SEBUAH SISTEM OLEH ANANDA BAGAS PRANATA