Tugas 3, Rangkuman Materi Aljabar Boolean

Aljabar Boolean

Aljabar Boolean adalah alat yang penting dalam menggambarkan, menganalisa, merancang, dan mengimplementasikan rangkaian digital.

1. Konstanta Boolean dan Variabel.

  • Aljabar Boolean dibawah ini hanya mempunyai dua nilai : 0 dan 1.
  • Logika 0 dapat dikatakan : false, off, low, no, saklar terbuka.
  • Logika 1 dapat dikatakan: true, on, high, yes, saklar tertutup.
  • Tiga operasi logika dasar: OR, AND, dan NOT. 
2. Tabel Kebenaran

  • Sebuah tabel kebenaran menggambarkan hubungan antara input dan ouput sebuah rangkaian logika.
  • Jumlah The number of entries corresponds to the number of inputs. For example a 2 input table would have 2 2 = 4 entries. A 3 input table would have 2 3 = 8 entries
  • Contoh tabel kebenaran dengan masukan 2, 3 dan 4 buah. 

3. Operasi OR dengan gerbang OR 
  • The Boolean expression for the OR operation is X = A + B
          > This is read as “x equals A or B.”
           > X = 1 when A = 1 or B = 1.
  • Truth table and circuit symbol for a two input OR gate:
     
4. OR Operation With OR Gates
  • The OR operation is similar to addition but when A = 1 and B = 1, the OR operation produces 1 + 1 = 1.
  • In the Boolean expression
             x=1+1+1=1
             We could say in English that x is true (1) when A is true (1) OR B is true (1) OR C is true (1).
  • There are many examples of applications where an output function is desired when one of multiple inputs is activated.
 

5. AND Operations with AND gates
  • The Boolean expression for the AND operation is X = A • B
           This is read as “x equals A and B.”
           x = 1 when A = 1 and B = 1.
  • Truth table and circuit symbol for a two input AND gate are shown. Notice the difference between OR and AND gates.
6. Operation With AND Gates
  • The AND operation is similar to multiplication.
  • In the Boolean expression 
           X = A • B • C
           X = 1 only when A = 1, B = 1, and C = 1.

7. NOT Operation
  • The Boolean expression for the NOT operation is 
          X = A 
  • This is read as:
          > x equals NOT A, or
          > x equals the inverse of A, or
          > x equals the complement of A

8. Describing Logic Circuits Algebraically
  • The three basic Boolean operations (OR, AND, NOT) can describe any logic circuit.
  • If an expression contains both AND and OR gates the AND operation will be performed first, unless there is a parenthesis in the expression.
9. Evaluating Logic Circuit Outputs
  • Rules for evaluating a Boolean expression:
          > Perform all inversions of single terms.
          > Perform all operations within parenthesis.
          > Perform AND operation before an OR operation unless parenthesis indicate otherwise.
          > If an expression has a bar over it, perform the operations inside the expression and then invert                 the result.
 
10. NOR Gates and NAND Gates
  • Combine basic AND, OR, and NOT operations.
  • The NOR gate is an inverted OR gate. An inversion “bubble” is placed at the output of the OR gate.
  • The Boolean expression is, x = A + B
11. Universality of NAND and NOR Gates
  • NAND or NOR gates can be used to create the three basic logic expressions (OR, AND, and INVERT)
  • This characteristic provides flexibility and is very useful in logic circuit design.
12. Summary of Methods to Describe Logic Circuits
  • The three basic logic functions are AND, OR, and NOT.
  • Logic functions allow us to represent a decision process.
          > If it is raining OR it looks like rain I will take an umbrella.
          > If I get paid AND I go to the bank I will have money to spend.

PENULIS    : Ananda Bagas Pranata (2F)

Komentar

Postingan populer dari blog ini

SIMULASI DAN PEMODELAN OLEH ANANDA BAGAS PRANATA

HUBUNGAN SIMULASI DAN PEMODELAN DALAM SEBUAH SISTEM OLEH ANANDA BAGAS PRANATA

STUDI SIMULASI DAN PEMODELAN DALAM SEBUAH SISTEM OLEH ANANDA BAGAS PRANATA